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Abstract

A new group-contribution model based on the lattice model is developed to interpret phase behaviors of solid polymer electrolyte/salt
systems on the nonrandom mixing effect. The model includes the combinatorial energy contribution that is responsible for the revised Florye
Huggins entropy of mixing, the van der Waals energy contribution from dispersion, and the polar force and the specific energy contribution from
hydrogen bonding.

Lattice model gives a starting point for a theoretical description of thermodynamic properties of polymer solution systems. The proposed
model in this study improves the configurational energy of mixing and correlates energy of mixing term including the effect of nonrandom
mixing on the configurational thermodynamic properties of a binary mixture with experimental data.

Our results show that good agreement is obtained upon comparison with experimental data of various PEO and salt systems in the interested
ranges.
� 2006 Published by Elsevier Ltd.
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1. Introduction

Solid polymer electrolytes, formed by dissolving salts in
a polymer matrix, have been receiving a considerable attention
as solid electrolyte materials in the advanced applications
such as high energy density batteries, electrochromic devices
and chemical sensors, etc. Since the concept of a solid polymer
electrolyte was first proposed by Wright et al. [6], global interest
has especially focused on lithium polymer electrolyte batteries
because of their high energy density, safety, and the flexibility
in both their shapes and production processes. A large number
of studies to date have been carried out on poly-
(ethylene oxide) (PEO) containing lithium salts.

* Corresponding author. Tel.: þ82 2 2220 0529; fax: þ82 2 2296 0568.

E-mail address: ycbae@hanyang.ac.kr (Y.C. Bae).

URL: http://www.inchem.hanyang.ac.kr/lab/mtl/
0032-3861/$ - see front matter � 2006 Published by Elsevier Ltd.

doi:10.1016/j.polymer.2006.05.072
Since David Fenton and crystallographer John Parker [8] ex-
amined on semi-crystalline polyethylene oxide (PEO)ealkali
salt complexes of simple structure having alkali salts in high
concentrations throughout both crystalline and amorphous
components, solid polymer electrolytes (SPE) have been widely
studied and expected to be excellent composites because of
their electrochemical processability, high energy density, and
flexibility.

Group-contribution model is a very efficient tool to describe
thermodynamic properties of polymer solution because it
utilizes existing phase equilibrium data when predicting phase
behaviors of given systems of which data are not plentiful.
The basic idea is starting from that whereas the chemical com-
pounds of interest in chemical technology are numerous, the
number of functional groups which constitute those compounds
is, however, much smaller. Thermodynamic properties of a fluid
can then be calculated as the sum of contributions made by the
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functional groups. However, any group-contribution method is
necessarily an approximate as the contribution of a given group
in one molecule is not necessarily the same as that in another
molecule. The fundamental assumption of group-contribution
method is additivity. This assumption is valid only when the
contribution made by one group in a given molecule is not
affected by the nature of other groups within that molecule.

Extension of the group-contribution idea to polymer solu-
tions has been proposed previously by Oishi and Prausnitz
[9], with later variations by Holten-Andersen et al. [10,11],
Chen et al. [12], Elbro et al. [13], Kontogeogis et al. [14], and
Bogdanic and Fredenslund [15]. These methods are based
on the UNIFAC correlation which is often successful for
estimating phase equilibria in mixtures containing ordinary
(nonpolymer) liquids.

The fundamental basis for existing group-contribution
methods for polymer solutions is the lattice theory of Flory
[16] and Huggins [17] with variations (e.g. Guggenheim [18],
Orifino and Flory [19], Koningsveld et al. [20]). However, it
is well known that the FloryeHuggins theory is based on severe
simplifying assumptions which have happily been overcome in
the much-improved lattice-cluster theory of Freed and co-
workers [21,22]. Freed’s theory is mathematically complicated.
However, the results can be well approximated using a mathe-
matical simplification introduced by Hu et al. [23e25]. Re-
cently, Helmholtz energy of mixing has been reported by
Chang and Bae [26] to describe the phase equilibria of various
polymer solutions over the entire concentration and for various
temperatures. And Hu et al. [27] presented the group-contribu-
tion method including a revised FloryeHuggins entropy, a
series of expression for excess internal energy and a double
lattice model to account for specific interactions.

This work is to employ the lattice model which gives a starting
point for a theoretical description of thermodynamic properties
of polymer/salt systems, and the configurational Helmholtz en-
ergy is obtained upon combining the GibbseHelmholtz equation
with Guggenheim’s athermal entropy of mixing as a boundary
condition [5,28]. Classical models, such as the FloryeHuggins
model [1e4] and the quasi-chemical model [5], are existing
configurational energy of mixing models, in which the residual
terms are truncated resulting in significant errors on the pre-
diction of the property for polymer solution systems.

The purpose of this work is to propose a new Helmholtz
energy of mixing expression to improve the configurational
energy of mixing and a group-contribution model, in which
the configurational energy of mixing term includes the effect
of nonrandom mixing on the configurational thermodynamic
properties of a binary mixture and is extended to predict the
chemical potentials using the six adjustable parameters ob-
tained from phase behavior calculations for various solid poly-
mer electrolyte/salt systems, and with various solid polymer
electrolyte/salt systems.

2. Model development

In this section, we derive the Helmholtz energy of mixing
to describe the phase behaviors of solid polymer electrolyte/
salt systems. To take the oriented interaction into account,
the secondary lattice concept [23,29], which is a perturbation
to a fixed reference system (i.e. the Helmholtz energy of mix-
ing for the ordinary polymer solutions), is introduced. Finally,
chemical potential equation for phase-behavior description is
derived from the Helmholtz energy of mixing.

2.1. Internal and Helmholtz energies of mixing

The energy of mixing related to the number of nearest-
neighbor pairs is given by

DmixU

Nr3
¼ 1

2

N12

Nr

ð1Þ

where N12 and Nr are the total number of 1e2 pair contacts
and total lattice sites, respectively, and 3 is the interchange en-
ergy defined by Eq. (2)

3¼ 311 þ 322 � 2312 ð2Þ

where 3ij is the iej nearest-neighbor interaction energy. The
Helmholtz energy of mixing ðDmixAÞ is obtained by integrat-
ing the GibbseHelmholtz equation using the Guggenheim’s
athermal entropy of mixing [30] as a boundary condition:
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A dimensionless temperature is defined by ~T ¼ kT=3ð~3�1Þ,
where T is an absolute temperature and k is a Boltzmann’s
constant. ri, fi and qi are the relative molar volume, volume
fraction, and surface fraction of component i, respectively.
fi and qi are defined by Eqs. (5) and (6), respectively, as

fi ¼
Niri

N1r1þN2r2

ð5Þ

qi ¼
Niqi

N1q1þN2q2

ð6Þ

where qi is the surface area parameter as defined by

zqi ¼ riðz� 2Þ þ 2 ð7Þ

where z is the lattice coordination number. A simple cubic
lattice is used in this study (z¼ 6).

The mathematical form to correlate energy of mixing with
Monte-Carlo simulation data [31], which give the values of
N12 taking nonrandom mixing into account, is given by

2DmixU

Nr3
¼ f1f2

�
B0

1�A0ðf2�f1Þ

�
ð8Þ
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where

A0 ¼ a0þ a1½expð~3Þ � 1� ð9Þ

B0 ¼ b0þ b1½expð~3Þ � 1� ð10Þ

Parameters, a0, a1, b0 and b1 depend on the polymer chain
lengths. The following equations are obtained from Monte-
Carlo simulations

a0 ¼ 0:00012þ 0:22999ðr2� 1Þ
1þ 1:37129ðr2� 1Þ ð11Þ

a1 ¼�0:01717þ 0:02160ðr2 � 1Þ
1þ 0:09642ðr2� 1Þ ð12Þ

b0 ¼ 5:79880� 1:45604ðr2� 1Þ
1þ 1:83417ðr2� 1Þ ð13Þ

b1 ¼�1:42112� 0:16059ðr2 � 1Þ
1� 1:34296ðr2� 1Þ ð14Þ

The determining procedures for Eqs. (11)e(14) are de-
scribed elsewhere [32].

A simple lattice model expression for DmixA is given by Eq.
(15) from Eqs. (3) and (8).

DmixA

NrkT
¼
�
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NrkT

�
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þ 1

2
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�
C~3� B
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� ln
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ð15Þ

where

B¼ ða1b0 � a0b1Þð2f2� 1Þ þ b1

1þ ða1� a0Þð2f2� 1Þ ;

C¼ b0� b1

1þ ða1� a0Þð2f2� 1Þ

ð16Þ

2.2. Oriented interaction term

In Freed’s theory [33e39], DmixA of two monomers is
given by

DmixA=NrkT ¼ x1 ln x1 þ x2 ln x2 þ z~3x1x2=2� z~32x2
1x2

2=4þ/

ð17Þ

where z is the coordination number and xi is the mole fraction
of the component i. To obtain an analytical expression of the
secondary lattice, Oh and Bae [40] defined a new expression
for DmixA, replacing x by h and ~3 by d~3 in Eq. (17). Their ex-
pression is given by

DAsec;ij

NijkT
¼ 2

z

�
h ln hþ ð1� hÞlnð1� hÞ þ zCad~3ijð1� hÞh

1þCad~3ijð1� hÞh

�

ð18Þ
where DAsec;ij is the Helmholtz energy of mixing for the second-
ary lattice for an iej segmentesegment pair and Nij is the num-
ber of iej pairs; h is the surface fraction permitting oriented
interactions. In general, h is different for different components.
The calculation results are not sensitive to h. For simplicity, we
arbitrarily set h to 0.3 following Hu et al. [23,29] within a rea-
sonable range from 0.3 to 0.5. Ca is a universal constant equal to
0.4881. d~3ij

�
d3ij=kT

�
is the reduced energy parameter contrib-

uted by the oriented interactions of iej pairs such as hydrogen
bonding, donoreacceptor electron transfer or dipoleedipole in-
teraction except London dispersion force. If the secondary lat-
tice is regarded as an independent one, d3ij is separated into
two parts [5] for the system with strongly oriented interactions
between two components,

d3ij ¼ d3H
ij � d3S

ijT ð19Þ

where d3H
ij and d3S

ij are enthalpic and entropic energy contribu-
tions for the oriented interactions, respectively. Two parameters
represent the enthalpic disadvantage, d3H

ij , and the entropic
advantage, d3S

ij, for d3ij when system temperature increases. To
incorporate a secondary lattice with DmixA in Eq. (15), 3ij is re-
placed by 3ij � DAsec;ij=Nij. Following the definition of ~3 in Eqs.
(2) and (3), if an oriented interaction occurs in an iej segmente
segment pair, we replace ~3 in Eq. (15) by 3=kTþ 2DAsec;ij=NijkT.
If oriented interaction occurs in an iei segmentesegment pair, ~3
is replaced by 3=kT � DAsec;ii=NiikT.

2.3. van der Waals energy contribution

The energy parameter 3�ii in Eq. (20) is due to van der Waals
forces (dispersion and polar forces). For a pure component i,
3�ii can be estimated using the square of the pure-component
van der Waals solubility parameter of Hansen (Barton) [41],
which is the sum of a dispersion contribution and a polar con-
tribution: d2

vdW ¼ d2
d þ d2

p.

d2
vdW;i ¼

3NA3�iiri

Vmi

ð20Þ

where NA is the Avogadro number and where d2
vdW and Vmi are

at 25 �C. For a pure component, the effect of temperature on
3�ii is given by

3ii ¼ Fs1
31 þFs2

32 ð21Þ

3�jj ¼
3þii
Vmi

ð22Þ

where Vmi depends on temperature. The temperature-indepen-
dent parameter 3þii can be estimated by

3þii ¼
d2

vdWV2
mið25 �CÞ

3NAri

ð23Þ

ri ¼
VmiðvdWÞ

15:17� 10�6 m3 mol�1
ð24Þ
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The constant 15:17� 10�6 m3 mol�1 is the molar hard-
core volume of a CH2 group. In our model, the group-contri-
bution concept is considered to calculate the chain length con-
trary to that of the existing modified double lattice model.

The cross interaction van der Waals energy parameter 3�ij is
estimated by the geometric mean of the corresponding pure-
component parameters

3�ij ¼
ffiffiffiffiffiffiffiffi
3�ii3
�
jj

q
ð25Þ

Cross specific energy parameter d~3ij is calculated from pair-
interaction group parameters

d3ij

k
¼
XNs

m¼1

XNp

n¼1

fmfngmn ð26Þ

where Ns and Np are number of groups in solvents and poly-
mers, respectively; fm and fn are volume fractions of group
m in a solvent and that of group n in a polymer, respectively;
gmn are pair-interaction parameters between group m in a
solvent and group n in a polymer. To improve the accuracy of
prediction, we assume that a functional group in a polymer is
different from that in a solvent.

In this study, they are estimated by fitting experimental
phase-behavior data of solid polymer electrolyte/salt
systems.

2.4. Solvent activity

If the solvent of a binary polymer solution is designated
as component 1, the solvent activity can be derived from
Eq. (15):
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where Vmi and VmiðvdWÞ are the molar volume and the van der
Waals volume of component i, respectively. Vmi is a function
of temperature; however, VmiðvdWÞ is a constant. Vmi and
VmiðvdWÞ are estimated by the van Krevelen group-contribution
method [42]. The molar volume of solvents is estimated by the
modified Racett equation [43] for accuracy.

The final expression for the chemical potential can be writ-
ten as
Dm1¼
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2.5. The melting point depression theory

To determine the parameters from phase diagrams, Flory’s
melting point depression theory is used. In a semi-crystalline
system, the condition of equilibrium between a crystalline
polymer and the polymer unit in the solution may be described
as follows [44]:

mc
u � m0

u ¼ mu� m0
u ð32Þ

where mc
u, mu and m0

u are chemical potentials of crystalline
polymer segment unit, liquid (amorphous) polymer segment
unit and chemical potential in standard state, respectively.
Now the formal difference of appearing on the left-hand side
is expected as follows:

mc
u � m0

u ¼�DHu

�
1� T=T0

m

�
ð33Þ

where DHu is the heat of fusion per segment unit, Tm and T0
m

are melting point temperatures of the species in a mixture and
a pure phase, respectively. The right-hand side of Eq. (32) can
be restated as follows:

mu � m0
u ¼

Vu

V1

r1

r2

�
vDA

vN2

�
T;V;N1

ð34Þ

where V1 and Vu are the molar volumes of the salt and of the
repeating unit, respectively. By substituting Eqs. (33) and (34)
into Eq. (32) and replacing T by Tm,2, the equilibrium melting
temperature of mixture is given by

1

Tm;2

� 1

T0
m;2

¼� k

DHu

Vu

V1
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r2

�
m2� m0

2

kTm;2

�
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The subscripts 1, 2 and u refer to the salt, the polymer, and
polymer segment unit, respectively. Similarly, we obtain for
salt (component 1)

1

Tm;1

� 1

T0
m;1

¼� k

DH1

�
m1� m0

1

kTm;1

�
ð36Þ

Correlating Eqs. (35) and (36) to the present work gives
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3. Results and discussion

We have developed a new group-contribution model to de-
scribe phase behaviors for polymer/salt systems. To take the
oriented interaction into account, the secondary lattice concept
[23,29], which is a perturbation to a fixed reference system
(i.e. the Helmholtz energy of mixing for the ordinary polymer
solutions), is introduced.

The proposed model gives a new expression for the config-
urational energy of mixing.

To correlate the energy of mixing term including the effect
of nonrandom mixing on the configurational thermodynamic
properties of a binary mixture with simulation data, we use
Monte-Carlo simulation data [28].

In this work, most of the parameters are calculated from
pure-component properties, either from experimental data or
from published estimation methods. To establish the group-
contribution method, the most significant role is to determine
the cross-pair interaction between polymer and salt segments.

Fig. 1 shows the phase behavior of PEO/LiCF3SO3 sys-
tems. Dark squares are experimental data for the salt-rich
phase and dark circles for the polymer rich phase reported
by Minier et al. [45]. The solid line is the calculated
coexistence curve by the proposed model and the dotted line
is by the original modified double lattice model (MDL).

Table 1 gives the physical properties of each component
such as melting temperature, heat of fusion, molecular weight,
density, and molar volume [45]. The densities of PEO and
LICF3SO3 are 1.21 and 2.69 g/cm3, respectively. We let the
number of the salt segment, r1, be a unity and calculated the
number of the polymer units, r2, using specific volumes v1

and v2 for solvent and polymer, respectively:

r2 ¼
M2v2

M1v1

ð39Þ

where M1 and M2 are molecular masses for salt and polymer, re-
spectively. By substituting values of r1¼ 1, r2¼ 12,824.99 and
T0

m;1 ¼ 499:29 K into Eqs. (37) and (38) the best fit to the poly-
mer and salt-rich liquidous curve (solid line in Fig. 1) is
obtained.

These are generally accepted as reasonable values in many
researches. Group-interaction parameters, gmn (k), are listed in
Table 2 for corresponding functional group pairs.

Fig. 2 shows the phase behavior of PEO/NaI system. The
densities of PEO and NaI systems are 1.21 and 3.667 g/cm3, re-
spectively. By substituting values of DH1 ¼ 23; 600 J=mol,
r1¼ 1, r2¼ 20,147 and T0

m;1 ¼ 933 K into Eq. (38), the best
fit to the salt-rich liquidous curve is obtained. Adjustable model
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Fig. 1. Phase diagram for the PEO/LiCF3SO3 system. The dark squares and

dark circles are experimental melting point data reported by Minier et al.

[45]. The solid lines are calculated by the proposed model and dotted lines

are calculated by the MDL model.

Table 1

List of melting temperature, heat of fusion, molecular weight, density, and

molar volume for each sample

Sample T0
m (K) DH (J/mol) MW (g/mol) Density

(g/cm)

vu (cm3/mol)

PEO 338.15 8284.32a 900,000 1.21 36.60

LiI 719 14,600 133.84 4.06 55.3

NaCF3SO3 527.15 10,433.718 172.06 1.13 108.8

NaI 933 23,600 149.89 3.667 65.7

LiCF3SO3 499.29 10,516.48 156.01 2.69 52.66

a 8284.32 J unit�1.
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parameters are listed in Table 2. Substituting the same adjust-
able model parameters with DHu ¼ 8284:32 J=mol,
Vu¼ 36.6 cm3/mol, V1¼ 65.7 cm3/mol and T0

m;2 ¼ 338:15 K
into Eq. (37), the solid lines are the best fit to the polymer and
salt-rich liquidous curve (solid line in Fig. 2) by proposed
model, and the dotted line is by the original modified double
lattice model (MDL).

Figs. 3 and 4 represent phase behaviors of PEO/LiI and PEO/
NaCF3SO3 systems, respectively. All solid lines are calculated
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Fig. 3. Phase diagram for the PEO/LiI system. The dark squares and dark cir-

cles are experimental melting point data [46]. The solid lines are calculated by

the proposed model and dotted lines are calculated by the MDL model.

Table 2

Group-interaction parameter gmn (k)

Salts Polymer (PEO)

CH2 O

Li 182.74 198.68

CF3SO3 �36.22 100.63

Na 198.66 43.50

I �95.38 �111.48
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Fig. 2. Phase diagram for the PEO/NaI system. The dark squares and dark cir-

cles are experimental melting point data [46]. The solid lines are calculated by

the proposed model and dotted lines are calculated by the MDL model.
by using previously obtained group-interaction energy parame-
ters (Table 2) with no additional adjustable model parameters.
Dark squares and circles are experimental data reported by
Kim et al. [47]. The solid line is the calculated coexistence
curve by the proposed model, and the dotted line is by the orig-
inal modified double lattice model (MDL).

It is clear that the lattice model gives good agreement with
experimental data.

In this study, we determined group-interaction energy pa-
rameters and ionic parameters between solid polymer electro-
lyte and salt groups. The results obtained by the proposed
model are expected to provide the appropriate operating con-
ditions for lithium secondary battery.

To characterize the most common SPE/salt system, more ex-
perimental data are required to obtain numerous group param-
eters for other electrolyte systems, and then to extend the
group-contribution method to a larger variety of systems.

4. Conclusion

A new group-contribution model based on the lattice model
is developed to interpret phase behaviors of solid polymer elec-
trolyte/salt systems on the nonrandom mixing effect. We derive
the Helmholtz energy of mixing to describe the phase behav-
iors of solid polymer electrolyte/salt systems using previously
determined interaction energy parameters with no adjustable
model parameters of the calculated curves and experimental
results were compared.

The proposed model has a simplified and improved expres-
sion for the Helmholtz energy of mixing for polymer/salt sys-
tems and gives good agreement with the experimental data.
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